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Abstract
We report on a molecular dynamics study of the cross-plane lattice thermal
conductivity in GaAs/AlAs superlattices. The layers of the superlattice
are modelled by a three-dimensional face centred cubic lattice with cubic
anharmonicity, and with atomic scale roughness at the interfaces. We perform
the simulation of heat flow for a section of a superlattice with high- and low-
temperature thermal reservoirs attached to opposite ends. The calculation
reproduces qualitatively the features observed experimentally, i.e., the dramatic
reduction of the conductivity relative to the conductivity of the bulk constituent
materials, and the variation of the thermal conductivity with the superlattice
repeat distance. The results are also in agreement with those obtained previously
by Daly et al (2002 Phys. Rev. B 66 024301) who determined the thermal
conductivity from the time taken for an initially inhomogeneous temperature
distribution to relax.

1. Introduction

Recently, the thermal conductivity (κSL) in dielectric and semiconducting multilayered
structures, or superlattices, has been measured by several groups [1–7]. It has been found
that κSL is substantially reduced relative to the conductivity of the bulk materials making up
the structure. In particular, Capinski et al [4, 5] made measurements with GaAs/AlAs samples
of various repeat distances over a wide range of temperatures (100–375 K). At 300 K, for
instance, they observed that the thermal conductivity was between three and ten times less
than that of bulk GaAs κGaAs, depending on the repeat distance. A similar reduction has been
found in Si/Ge [6], and Bi2Te3/Sb2Te3 superlattices [7]. Control of the thermal conductivity
of superlattices is important for device applications. For structures used in semiconductor
lasers, a high thermal conductivity is required whereas a low thermal conductance is needed
for thermoelectric applications.
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In semiconductor superlattices thermal energy is transported primarily by phonons. The
kinetic formula gives the thermal conductivity κ as

κ = C〈v2〉τ, (1)

where C is the specific heat, 〈v2〉 is the average of the square of the component of the phonon
group velocity in the direction of heat flow and τ is the average phonon lifetime. It is believed
that the modification of the phonon group velocity in a multilayered system [8–10] makes
a significant contribution to the reduction in the thermal conductivity. This effect has been
analysed by several groups [11, 12]. However, the modification of the phonon group velocity
was found to not be the only factor contributing to the change in the conductivity. Since the
specific heat of a superlattice is unlikely to have a significant variation with the repeat distance,
the conclusion is that there must be a change in the phonon relaxation time [13–15]. However,
a completely quantitative theory of the phonon relaxation time and the thermal conductivity
κSL in superlattices has not yet been achieved.

As an alternative approach, Daly et al [16] have recently used a molecular dynamics (MD)
simulation to study the thermal conductivity in superlattices. In their study, they considered
an initial temperature distribution of the form

T (x, t = 0) = T0 + �T0 cos(2πx/Lx), (2)

where the initial temperature perturbation �T0 was 10% of the mean temperature T0 and
Lx was the length of the sample in the x-direction (the growth direction). They then used
MD to determine the rate at which the amplitude �T (t) (with �T (0) = �T0) of the spatial
temperature variation in T (x, t) was modified by heat diffusion. From the rate at which the
temperature distribution relaxed, it was possible to deduce the thermal diffusion coefficient and
the thermal conductivity. When calculations were performed for a model with rough interfaces,
the thermal conductivity that was obtained exhibited the variation with layer thickness that had
been found experimentally.

The method employed by Daly et al has the advantage that the thermal conductivity can be
obtained with a relatively short computational time. However, an interesting problem arose in
the analysis. Based on the standard equation for heat diffusion in one dimension, �T (t) should
vary with time according to �T0 exp(−4π2κ t/C L2

x). However, it was found that this formula
did not give a good fit to the simulated �T (t) for small values of t . This was connected to
the fact that the heat diffusion equation has the unphysical property, i.e., an infinite spreading
velocity in the limit t → 0 [17]. Daly et al made an ad hoc modification of the solution of
the diffusion equation so that for small t , the distance that heat flows is of the order of v̄t ,
where v̄ is an average phonon velocity. With this modification, it was possible to obtain a
good fit to the simulated �T (t). So, the comparison of the results obtained by Daly et al with
another method for the determination of the thermal conductivity which does not rely on this
modification is important.

In the standard method for the simulation of thermal conductivity, the ends of the ‘sample’
are attached to hot and cold reservoirs and the heat flow through the sample is determined [18–
24]. (For other methods, for instance relying on the density- and heat-current correlation
functions, and thermal Kubo formula, see [25, 26].) Thus the purpose of the present study
is to employ this heat-reservoir method of MD simulation for the lattice thermal conductivity
in superlattices and see if the same results are obtained as were found by Daly et al when
the parameters of the sample are the same. We will see that the present calculations lead to
essentially the same results as obtained by Daly et al. In addition, we report on a number of
tests that we have made to investigate the dependence of the result for the thermal conductivity
on the length of the sample, i.e., Lx , and also on the transverse dimensions. These tests are
important because in a finite size system some part of the energy is not transported diffusively,
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Figure 1. Schematic two-dimensional diagram of the (GaAs)1(AlAs)1 superlattice used in the MD
simulations with A = GaAs (open circles) and B = AlAs (full circles). The atoms are connected
by anharmonic springs between nearest neighbours. Buffer layers (hatched circles) are attached at
both ends of the superlattice. The atoms in the buffer layers are connected with harmonic springs
and end atoms interact directly with thermal reservoirs (which are not shown in the figure). Fixed
boundaries are introduced at the both ends of the system in the longitudinal x-direction and periodic
boundary conditions are assumed in the lateral (y- and z-) directions.

i.e., some phonons will be able to travel without scattering from one end of the sample to the
other. Thus, to obtain a reliable result for the thermal conductivity it is necessary to simulate
heat flow in a sample of sufficient size.

In section 2, we describe the basic formulation for our MD simulations. In section 3,
numerical results for the thermal conductivity are presented for a GaAs/AlAs superlattice with
and without disorder at the interfaces.

2. Molecular dynamics simulation

2.1. Lattice model

We consider a periodic superlattice whose unit period consists of two layers of fcc lattice (A
and B), each with lattice constant a. The interface between consecutive layers lies between
two adjacent (100) planes of atoms (see figure 1). The undisplaced positions of atoms are
r = (nx a, nya, nza), where (nx , ny, nz) are integers whose sum is an even integer. In the slab
A (B), atoms of mass MA (MB) are connected to their 12 nearest neighbours by harmonic and
anharmonic springs described by a potential which is the same for A–A, B–B and A–B pairs
of atoms [27].

To carry out the MD simulation, it is convenient to replace the full potential energy by
an expansion to third order in the displacements of atoms from the equilibrium configuration,
i.e., to write

φ = −C̃ + 1
2β(r − √

2a)2 + 1
6β ′(r − √

2a)3, (3)

where C̃ is a constant, r is the instantaneous distance between the atoms, and
√

2a is the nearest
neighbour spacing. The coefficients involved in this expression are related to measurable
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quantities through

β = 3B̃a

2
(4)

and

β ′ = −9B̃γ√
2

, (5)

where B̃ is the bulk modulus and γ is the Grüneisen constant [28]. We write the thickness of a
slab A (B) as dA = nAa (dB = nBa), where nA (nB) is the number of atomic monolayers. The
length of one period is D = dA + dB. The overall dimensions of the sample are Lx = Nx a,
L y = Nya, Lz = Nza and periodic boundary conditions to the atomic motion in the lateral
directions (the y- and z-directions) are applied.

In the simulations we add ‘buffer’ layers consisting of a monolayer of A atoms to both
ends of the superlattice. The atoms in the buffer layers are connected by harmonic springs of
strength β to the superlattice atoms and also to a fixed boundary (see figure 1). The end atoms
in the buffer layers exchange energies with thermal reservoirs, resulting in a heat flow through
the superlattice.

We use the above structure as a model of a GaAs/AlAs superlattice and denote it as
(GaAs)nA

(AlAs)nB
. Here we note that GaAs and AlAs have the zinc blende structure with

two atoms in the unit cell. So in the fcc model, we assign a single GaAs (AlAs) molecule to a
lattice point in the A (B) layer [12].

2.2. Parameters

We set the parameters to the same values as used by Daly et al [16]. Thus, MA = 1.20×10−22 g
and MB = 0.85 × 10−22 g. We use the same lattice constant a = 2.24 Å and the same force
constant β = 2.56 × 104 g s−2 for both lattices. The Grüneisen constant is taken as γ = 1.

2.3. Thermal reservoirs and heat flux

Let the temperatures of the hot and cold reservoirs be TH and TL, respectively. These
reservoirs interact with the atoms in the buffer layers at the ends (nx = 0 and Nx + 1) of
the superlattice [18, 20]. The interaction amounts to changing the energy of an atom in the
buffer layer at the hot end to a new random value which is chosen from a Maxwell–Boltzmann
distribution corresponding to the temperature TH. The direction of motion of the atom after
this interaction is random. Energy exchange with the cold reservoir is handled in a similar
way. The unit time step in the simulation is 4.4 fs and the interaction is assumed to occur
every 20 time steps, so energy exchange with the buffer layer occurs every δt = 88 fs. This
value has been chosen because the thermal boundary resistance (Kapitza resistance) between
the heat reservoirs and the superlattice is minimized for δt in the vicinity of this value. We
discuss this Kapitza resistance in more detail in section 3.1 below.

We write the heat flux flowing (normal to the superlattice interfaces) from the hot reservoir
into the superlattice as jH(t) and that flowing into the cold reservoir from the superlattice as
jL(t). To reduce the fluctuation in time of the calculated jH,L(t), we take averages of the heat
flux over an appropriate time interval �t

〈 jH,L(t)〉 = 1

�t

∫ t+�t/2

t−�t/2
jH,L(t ′) dt ′. (6)

Figure 2 shows the averaged heat flux 〈 jH(t)〉 flowing out from the hot reservoir and 〈 jL(t)〉
flowing into the cold reservoir for a (GaAs)1(AlAs)1 superlattice. In this calculation we have
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Figure 2. Heat flux flowing into (〈 jH〉, bold curve) and flowing out of (〈 jL〉, thin curve) the
(GaAs)1(AlAs)1 superlattice. For time after τ0, the superlattice is in a state in which there is a
steady heat flow.

taken �t = 1.5 ns (=3.4 × 105 time steps). After a time τ0 of around 1.32 ns from the
beginning of the simulation, the fluxes 〈 jH(t)〉 and 〈 jL(t)〉 become almost identical, and a
steady heat flow exists inside the superlattice.

2.4. Temperature gradient

The local temperature T (x) in the superlattice as a function of the longitudinal coordinate x is
defined by taking the average of the kinetic energy of all molecules in the cross sectional area
(in the y–z plane) and then taking an average over time

T (x = nx a) = 4

3kB Ny Nz

∑
ny,nz

〈p2
(nx ,ny ,nz)

〉t

2Mnx

, (7)

where 〈· · ·〉t means the time average in the steady state (t > τ0) and Mnx is either MA or
MB depending on the position x = nx a. It should be noted that the total number of lattice
points in the y–z plane is Ny Nz/2 for the fcc lattice we consider. This brings the extra factor
2 in the numerator of equation (7). Once the heat current Jx(= jH = jL) and the temperature
distribution T (x) are determined, the thermal conductivity κ can be calculated from Fourier’s
law

Jx = −κ∇x T (x). (8)

3. Results

3.1. Temperature profiles

Figure 3(a) illustrates the calculated temperature profile of the (GaAs)1(AlAs)1 superlattice
(without any disorder). The temperatures of the reservoirs are TH = 330 K and TL = 270 K.
It can be seen that the temperature varies linearly with distance, and that the temperatures T ′

H
and T ′

L at the ends of the superlattice differ appreciably from the reservoir temperatures. This
is a result of the Kapitza resistance which is dependent on the nature of the coupling of the
superlattice with the reservoirs. The ideal reservoir would be a perfect emitter and absorber
of phonons of all frequencies and polarizations and so would have no Kapitza resistance.
But it does not appear simple to create such a reservoir. For fixed values of TH and TL the
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Figure 3. Temperature profiles in the superlattice in the steady state. TH = 330 K and TL = 270 K
are the temperatures at the hot and cold thermal reservoirs. (a) (GaAs)1(AlAs)1 superlattice with
ideal interfaces. T ′

H = 316 K and T ′
L = 284 K are the temperatures of the end molecules in the

superlattice. (b) (GaAs)1(AlAs)1 superlattice with interfacial roughness f = 0.5. T ′
H = 326 K

and T ′
L = 274 K are the temperatures of the end molecules in the superlattice.

temperature differences TH − T ′
H and T ′

L − TL are smaller for a poor conductor because then
there is a smaller heat flow. As an example, we show in figure 3(b) results for a superlattice
of the same geometry but with interfacial roughness. Fortunately, the existence of the Kapitza
resistance does not influence the size dependence and the magnitude of the thermal conductivity
as we will discuss below.

Here we comment on the temperature profiles we obtained in the course of simulations.
Although the temperature in the superlattice shown in figure 3 appears to vary linearly with
distance, careful examination shows that there is some nonlinearity. We find that if no disorder
is present, the temperature decreases exponentially rather than linearly on going from the hot to
the cold end. This can be more easily seen if a larger temperature difference TH−TL is assumed
(figure 4(a)). The heat flux is the same throughout the superlattice, and so from Fourier’s law
the product of κ with dT/dx must be constant. Consequently, an exponential profile indicates
that the thermal conductivity varies as T −1. This is the situation for ordered systems where
anharmonicity resists the heat flow. In this case the phonons scatter only off phonons and so
the scattering rate goes as T , and the conductivity goes as the inverse of temperature.

However, when there exists disorder, such as interfacial roughness for short-period
superlattices, the temperature in the superlattices no longer varies exponentially with distance,
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Figure 4. Temperature profiles for TH = 400 K and TL = 100 K. (a) (GaAs)1(AlAs)1 superlattice
with ideal interfaces and (b) (GaAs)1(AlAs)1 superlattice with interfacial roughness f = 0.5.
Note the log- and linear-scale for the vertical axis of (a) and (b), respectively. The dotted straight
lines are guides to the eye.

but instead varies closer to linearly in distance (figure 4(b)). If we have a linear temperature
profile, the conductivity deduced from Fourier’s law should be independent of temperature.
This is in accord with the fact that the scattering from the disorder is temperature independent
and this leads to the conductivity being independent of temperature.

We note, however, that the temperature profile which we approximate as linear in distance
for ideal superlattices (without any disorder) does not affect the magnitudes of the thermal
conductivity in the present simulations.

3.2. Size dependence of the thermal conductivity

In determining the thermal conductivity from the simulations, we have to pay attention to
the fact that when Fourier’s law holds, the thermal conductivity should be independent of the
system size. However, if the size of the superlattice assumed in the simulations is small, some
of the phonons travel ballistically over the distance between the reservoirs. The presence of
these unscattered phonons leads to a thermal conductivity depending on the system size. In
order to avoid this situation, we have first determined the appropriate dimension of the system
from the simulations for bulk GaAs.

Figure 5 exhibits the dependence of the calculated bulk thermal conductivity κGaAs on
the sample length Nx . For Nx > 1200, the thermal conductivity becomes fairly insensitive
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Figure 5. Size dependence of the simulated thermal conductivity κGaAs in bulk GaAs. κGaAs
versus longitudinal lattice length Lx = Nx a for Ny = Nz = 12 is shown by open circles for
TH = 330 K and TL = 270 K. Crosses are the same κGaAs for TH = 390 K and TL = 210 K.
In each case, the central temperature is T = 300 K. Inset illustrates κGaAs versus lateral lattice
dimension L y = Lz = Ny a for Nx = 1200 at TH = 330 K and TL = 270 K.

to the system size. Also, we show in the same figure the dependence of κGaAs on lateral
size. We find that for Ny = Nz > 10, the thermal conductivity depends only weakly on the
lateral dimensions. A similar lateral size dependence of thermal conductivity has been found
by Schelling et al [24] and also by Daily et al [16]. A moderate dependence of the thermal
conductivity on lateral dimensions was discussed in some detail by Schelling et al. However,
we have not attempted to make a detailed comparison of our results with their ideas.

These results are obtained by taking the temperatures of the reservoirs as TH = 330 K
and TL = 270 K. We have also changed the temperatures of the reservoirs to TH = 390 K
and TL = 210 K and calculated κGaAs for Nx = 1200 and 1500. The results are also shown
in figure 5 with crosses. To within the uncertainty, we find the same magnitudes for κGaAs,
implying that the thermal conductivity is insensitive to the temperatures of the reservoirs
assumed.

Although a larger size for the system is expected to give a more accurate result, it is
time consuming. As the length increases, the time increases not only because there are more
atoms, but also because a longer time is needed before steady state is achieved. In most of
the simulations, we therefore study superlattices of size Nx = 1200, Ny = 12, and Nz = 12.
The simulations were performed on a Hitachi SR8000 supercomputer and took CPU times up
to 6 h for bulk GaAs and 8 h for a (GaAs)1(AlAs)1 superlattice with rough interfaces. This
sample size should be compared with Nx = 3200, Ny = 20, Nz = 20 used by Daly et al in
their study [16]. Daly et al calculated the thermal conductivity by simulating the diffusion of
heat with an initial temperature profile they set up in the system, whereas in our simulations
the data available for deducing the thermal conductivity are acquired only after the system
becomes stationary. For this reason, the present simulations take a greater computation time,
and to compensate for this we have to use a smaller sample than was used by Daly et al.

The absolute value of the thermal conductivity in bulk GaAs obtained from the present
simulation with the parameters as given above is κGaAs = 1.21 W cm−1 K−1 at 300 K. This is
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the two temperatures.

close to the value 0.99 W cm−1 K−1 [16] obtained by Daly et al at the same temperature but
about a factor of 2–3 larger than the experimental value κ

expt
GaAs = 0.45 W cm−1 K−1 [5]. This

discrepancy is not surprising because our lattice model is much simpler than the real structure,
and the simulated κGaAs depends crucially on the assumed value of the Grüneisen parameter.
Moreover, the disorder due to mass defects and so on is not included.

3.3. Superlattice with ideal interfaces

Figure 6 shows the calculated thermal conductivity κSL versus repeat distance in GaAs/AlAs
superlattices (at 300 and 400 K) with ideal interfaces together with the bulk thermal conductivity
κGaAs. For all bilayer thickness κSL at 400 K is smaller than at 300 K and their relative magnitude
is in accord with the value expected from T −1-law of the thermal conductivity.

For short period superlattices the calculation gives a reduction factor that increases as the
period becomes longer. More precisely, we see that the calculated κSL decreases monotonically
as the layer thickness increases and at nA = nB ≡ ñ = 10 approaches a value of about 1/3
of the bulk κGaAs. This behaviour has not been observed experimentally (see figure 7) but is
in agreement with the previously reported reduction of the thermal conductivity (displayed in
the same figure 7) [12] due to the zone-folding effect. The opening of frequency gaps at the
mini-Brillouin zone centre and boundaries lowers the average phonon group velocity. Thus,
our calculation supports the hypothesis that the zone-folding is the dominant effect on the
thermal conductivity in the short period superlattices without disorder.

In contrast, for the longer period superlattices the simulation indicates that κSL begins to
increase slowly, as is seen in the experimental data. Thus the simulated thermal conductivity
in GaAs/AlAs superlattices with ideal interfaces can only explain the experimental results for
long period superlattices. Apart from the overall magnitude of a factor of 20%, all these results
for perfect superlattices shown in figure 6 are in good agreement with the simulated results of
Daly et al for the entire region of bilayer thickness plotted.
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the experimental results (crosses) from [5]. The experimental error is approximately 10%. Full
circles are the results obtained with only the effect of group velocity reduction due to zone-folding
effects (from [12]) (τ in the vertical axis is the average phonon relaxation time). The system size
is Nx = 1200, Ny = 12, Nz = 12. The temperature is 300 K.

Here we note that the existence of a minimum thermal conductivity at a certain repeat
distance and the subsequent increase of the thermal conductivity qualitatively coincide with the
experiment by Venkatasubramanian with Bi2Te3/Sb2Te3 superlattices [7], where the minimum
thermal conductivity has been observed for a period of 50 Å. A possible explanation for the
existence of the conductivity minimum based on the idea of the crossover between the particle
and wave nature for phonons has been given by Gurzhi et al [29], and Simkin and Mahan [30].

It is tempting to make an analogy between the minimum thermal conductivity found here
and the well-known Knudsen minimum that occurs for the flow of gas along a tube. However,
as pointed out by Simkin and Mahan [30] the minimum in the heat flow in superlattices
is related to the cross-over between particle and wave-interference transport, whereas the
Knudsen minimum in gas flow is an effect that can be understood entirely within a theory
based on the Boltzmann equation [31].

3.4. Superlattices with interfacial roughness

A transition region containing both layer constituents exists typically at the boundary between
adjacent layers, usually with a thickness of about a monolayer [5, 32]. In order to calculate the
effects of this interfacial roughness on the heat flow in superlattices, we use the same model
assumed by Daly et al [16]. Explicitly, for the last atomic monolayer of each superlattice
layer, the mass of each atom is randomly assigned to be the mass of a GaAs molecule or an
AlAs molecule, with a probability given by the roughness factor f (thus, f varies in the range
between 0 and 0.5).

The results of simulations performed for rough superlattices with f = 0.5 at 300 K
are shown in figure 7, along with the results for the ideal superlattices with f = 0 and
the experimental data. The results indicate that the introduction of the roughness at the
interfaces dramatically reduces the thermal conductivity of the shortest period superlattices.
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circles represent the calculated values at 300 K (400 K).

This reduction is by almost an order of magnitude for f = 0.5. As expected, the effect
decreases with increasing superlattice period, and for the (GaAs)120(AlAs)120 superlattice we
find no significant effect on the thermal conductivity. The thermal conductivity of these rough
superlattices increases with increasing bilayer thickness over the entire range of periods. This
sort of behaviour is what has already been seen in the simulations by Daly et al, as well as
in experiments. Specifically, the overall magnitude of the normalized thermal conductivity
κSL/κGaAs coincides well with the experimentally measured thermal conductivity except for
ñ < 5, where some fluctuations are observed in the experiments. Thus, it appears that
interfacial roughness may account for the discrepancy between the calculated reduction in
the thermal conductivity in the superlattices without disorder and the reduction observed in
the experimental data.

The thermal conductivity of the superlattices with a roughness factor f = 0.5 is compared
in figure 8 for 300 and 400 K. In distinction to the case for the superlattices with ideal interfaces
(figure 6), we find no significant change in κSL at these temperatures. This is the result that is
expected if the interfacial thermal resistance becomes the dominant effect which prevents the
heat conduction in superlattices.

4. Conclusion

In the present work we have calculated the lattice thermal conductivity κSL in GaAs/AlAs
superlattices in the growth direction based on a conventional MD simulation which assumes
hot and cold thermal reservoirs at opposite ends of the superlattice sample. Our results are found
to be in good agreement with those of Daly et al who employed a different MD calculation for
the same problem. This agreement gives support to the method used by Daly et al to obtain the
thermal conductivity from the rate of decay of an inhomogeneous temperature distribution.

The MD calculations have proven to be a powerful method for studying the thermal
conductivity in superlattices. In future work, we plan to apply the MD approach to the study
of heat conduction in disordered crystals and glasses with structural disorder.
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